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ABSTRACT 
 

Data mining has been rising rapidly. It happened after the booming of massive datasets in different 
field such as bioinformatics and e-commerce. The “large” data can be because of the number of variables, 
number of observations, or both (Kettenring, 2009). Modeling of high dimensional data is often confounded 
with multicollinearity and problem with interpretability of the fitted model. General Adaptive Sparse 
Principal Component Analysis (GAS-PCA) is used in reducing dimensionality that simultaneously induces 
sparsity. However, selection of few sparse components of the high dimensional predictors leads to 
specification bias. A random group level effect can help mitigate the bias in a model based on a few 
principal components. In this study, a two-level principal component regression model for high dimensional 
data was postulated. This study showed that GAS-PCA captured the structural dependencies of the data. 
It is showed that multilevel principal component regression model is best fitted to use when there are large 
number groups and when the variability of the group level effect is large.  
 
Key words: General adaptive sparse principal component, high dimensional data, multilevel model, 
principal component analysis, principal component regression  

 
 

1. Introduction 
 Data mining has been rising rapidly. It happened after the booming of massive datasets 
in different field such as bioinformatics and e-commerce. The “large” data can be because of the 
number of variables, number of observations, or both (Kettenring, 2009). Data are said to be 
high dimensional when the number of variables is greater than the number of observations.  
 

One of the problems in high dimensional data is the curse of dimensionality. It refers to 
the complexity of making statistical inference as the data becomes multivariate (Banks, 2010).  
Multicollinearity among variables can also be a problem in this situation. 

 
Principal component analysis (PCA) is used as reduction technique before performing 

other statistical techniques. PCA aims to lessen the dimensionality and solve the problem of 
multicollinearity of the data set with a large number of interrelated variables (Jolliffe, 2005). 

  
Principal component regression (PCR) uses the principal components as the predictor 

variables in the regression model. PCA with sparsity constraint can be used to induce 
interpretability of the model.  Leng and Wang (2009) proposed General Adaptive Sparse 
Principal Component Analysis (GAS-PCA). The method replaces the least- squares objective 
function in Sparse-PCA of Zou et. al. (2006) by a general objective function and uses adaptive 
lasso penalty in place of the lasso penalty in Sparse-PCA. Torres and Barrios (2013) employed 
GAS-PCA in a discrete choice model with high dimensional predictors. It turns out that the 
proposed procedure is better in terms of the interpretability of the predictors compared to the 
procedure using PCA.   

 
Principal components regression resolves multicollinearity and curse of dimensionality 

but not the loss of information or specification bias (Umali and Barrios, 2014). This leads to the 
problem on predictive ability of the model. They addressed this problem by using nonparametric 
principal regression.  

 
Multilevel model, which is also termed as hierarchical, nested or mixed model, has been 

popular in the biological and social sciences. This is due to the fact that humans belong to 
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different groups (Goldstein, 2011).  As an example, students are nested in classrooms and 
classrooms are nested in schools. Thus when student performance is investigated, it is possible 
that other than study habits, classroom and school settings contribute to it.    

 
In the Philippine setting, some reports on official statistics are at the provincial levels. 

However there is also a need to examine the region as a factor that can affect the statistics 
produced. This study then proposed to use the Multilevel model to account for the additional 
effect of higher level to the lower level statistics. 

 
 Suppose we want to model poverty incidence of all the provinces of the country, we can 
consider the aggregate data from the Philippine Statistics Authority on food security, population 
and employment which are related to poverty. The data are considered high dimensional if the 
number of variables is greater than the number of observations, which are provinces in this case. 
Principal Components Analysis can be applied to reduce dimension and then the extracted 
principal components will be used in the Principal Components Regression. However provinces 
belonging to the same region may have similarities. So we are interested in examining if the 
different regions can be potential sources of variability. Thus it is appropriate to use the multilevel 
model where provinces are the individual-level units and regions are the group-level units.  
 

2. The Proposed Model 

 
The study proposed the multilevel principal component regression model to mitigate the 

bias caused by using only the principal components in regression analysis. 
 

 In this study, only two levels in the multilevel were used. The higher level units are 
referred to as groups while the lower level units are the observations or units. 
 

Given ℎ group levels with 𝑛𝑖 elements, 𝑖 = 1, … , ℎ, the postulated model is  

𝑌𝑖𝑗 = 𝛹𝑖 + ∑ 𝛾𝑍𝑖𝑗𝑑

𝐷

𝑑=1

+ 𝜀𝑖𝑗 

where:  
 𝑌𝑖𝑗 is the response variable of the jth unit within the ith group,  

𝛹𝑖 is the random effect in the ith group distributed as 𝑁(𝜇𝑖, 𝜎𝛹
2 ), 

∑ 𝛾𝑍𝑖𝑗𝑑
𝐷
𝑑=1  is sum of the 1st to the Dth principal component of the jth unit within the ith 

group, 

𝜀𝑖𝑗 is the random error distributed as 𝑁(0, 𝜎2) 

 
Assumptions: 

1. 𝑌𝑖𝑗  could be discrete or continuous variable. 

2. 𝑍 are orthogonal (uncorrelated) variables. 

3. 𝛹𝑖  is the ith group random effect. 
This is the component of the model that addresses the effect of higher-level (or 

group level) of the observations. It is assumed that observations from the same group 
are homogeneous.  

4. Groups are independent. 
The groups should be independent and mutually exclusive. Each observation 

should only belong to one group. 
5. Group sizes may vary. 

The postulated model will be assumed to work for data with equal and unequal 
sizes of groups. 

  
3. Estimation Procedure 
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 Umali and Barrios (2014) proposed to mitigate the bias lost to selecting a few principal 
components only by allowing flexibility on the structure of the model, i.e. nonparametric link 
between the dependent variable and principal components was postulated. 
 

In Multilevel Principal Component Regression Model, the parameters 𝛾 and 𝛹 of the 
model were estimated simultaneously using the Best Linear Unbiased Prediction (BLUP) since 
the model has an additive formulation. The Linear Mixed Effects (lme4) package in R was used 
since it is designed to fit a linear mixed model, a generalized linear mixed model or a nonlinear 
mixed model. We can fit a linear mixed effect models with fixed as well as random/nested effects 
to predict the response variable. The lme4 function uses Restricted Maximum Likelihood (REML) 
to estimate the variance components (which is preferred over the standard Maximum Likelihood). 
  

4. Simulation Studies 

 
 A simulation study was conducted to evaluate the performance of the multilevel principal 
components regression model.  
 
Table 1. Boundaries of Simulation Study 

1) Number of groups a) Small (h=3) 
b) Large (h=10) 

2) Allocation per group a) Equal 
b) Unequal 

3) Group sizes a) Equal number of groups 
Small size (nk=5) 
Large size (nk=10) 

b) Unequal number of groups 
Small variation (randomly select from 2 to 10) 
 Large variation (Randomly select from 4 to 20) 

4) Number of Structural 
Dependencies 

a) Small structural dependencies (s=2)  
b) Large structural dependencies (s=5) 

5) Number of PCs to Retain a) d=1, d=2, d=3 (if s=2) 
b) d=4, d=5, d=6 (if s=5) 

6) Group level effect a) No variability 
(zero for all groups) 

b) Small Variability 
(increases by 500 for succeeding groups) 

c) Large Variability 
(increases by 2,500 for succeeding groups) 

7) Misspecification m in the 
model 

a) No misspecification (m=1)  
b) With misspecification (m=5) 

 
 The number of groups and the number of observations per group were considered in this 
study. It is of interest to know if the efficiency of the proposed model will be affected if there is 
an increase in the number of groups and number of observations. It has been examined whether 
the distribution (equal or unequal number of observations per group) has an impact to the 
adequacy of the model. 
 
 Different settings for generating high dimensional predictor variables were also explored. 
The number of predictor variables was fixed to 120 for all the settings. However, there are two 
of data generation (predictors), one with 2 structural dependencies and the other with 5 structural 
dependencies. This is because, in real life, variables are interrelated or do exhibit 
multicollinearity. Correlated predictors were generated in the following two scenarios: 
 

a) Set 1: Small structural dependencies (s=2),  

𝑥𝑖 = 𝑐𝑖𝑥1 + 𝑑𝑖 + 𝜀𝑖 for 𝑖 = 2, … ,60 
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𝑥𝑖 = 𝑐𝑖𝑥61 + 𝑑𝑖 + 𝜀𝑖 for 𝑖 = 62, … ,120 
 
where:  

𝑐𝑖 and 𝑑𝑖 are constrants, 

 𝑥1~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2),  

𝑥60~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏) and  

𝜀𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0,1). 
 

b) Set 2: Large structural dependencies (s=5),  

𝑥𝑖 = 𝑐𝑖𝑥1 + 𝑑𝑖 + 𝜀𝑖 for 𝑖 = 2, … ,24 

𝑥𝑖 = 𝑐𝑖𝑥25 + 𝑑𝑖 + 𝜀𝑖 for 𝑖 = 26, … ,48 

𝑥𝑖 = 𝑐𝑖𝑥49 + 𝑑𝑖 + 𝜀𝑖 for 𝑖 = 50, … ,72 

𝑥𝑖 = 𝑐𝑖𝑥73 + 𝑑𝑖 + 𝜀𝑖 for 𝑖 = 74, … ,96 

𝑥𝑖 = 𝑐𝑖𝑥97 + 𝑑𝑖 + 𝜀𝑖 for 𝑖 = 98, … ,120 
 
where:  

𝑐𝑖 and 𝑑𝑖 are constrants, 

𝑥1, 𝑥49, 𝑥73~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖 , 𝜎𝑖
2), 

 𝑥25, 𝑥97~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎𝑖 , 𝑏𝑖)  

𝜀𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 
 
The dependent variable was computed as the sum of the predictor variable all the 

predictor variables, group level effect and error term which is distributed as 𝑁(0, 𝜎2). 

 After the data generation, principal components (PC) were extracted. The number of PC 
extracted depends on the generated number of structural dependencies among the predictors. 

The first 𝑑 PCs were obtained, as suggested in Jolliffe (2005). Then the PCs were used in the 
principal component regression. 

Different group level effects were included in the simulation settings to assess the ability 
of higher level random effects to abate bias caused by using only the principal components in 
regression analysis.  

For the misspecification error, a constant 𝑚 was multiplied in the error term of 𝑌 where 

𝜀~𝑁(0, 𝜎2). The higher the value of 𝑚, the lower the predictive ability of the model.  
 There are 96 settings in total. For each setting, 100 sample replicates were generated.  

 
5. Evaluation of the Model 

 
 The proposed procedure was evaluated through a simulation study. The selected 
principal components were used in the multilevel principal component regression model. 
Analysis using the proposed model was conducted for each replicate and the predicted response 
was obtained. The mean absolute percent error (MAPE) has been used to evaluate the model. 
The formula of MAPE is given below 

𝑀𝐴𝑃𝐸 =
∑ |

𝑦𝑖 − 𝑦�̂�
𝑦𝑖

|𝑛
𝑖=1

𝑛
× 100 

To assess the goodness of fit, the rule of thumb for MAPE was utilized. The model is adequate 
when the MAPE is small, that is, atleast 20. The model will be rejected when MAPE is large. 
 

Also, the nonzero loadings percentage (NZL) has been used in the evaluation of the 
principal components. NZL is the percent of nonzero entries over the total number of entries of 
the PCA loadings. Low NZL is a good indicator that the PCA loadings are sparse. On the other 
hand, an NZL close to 100 suggests a non-sparse PCA loadings. 

 
The fitted model from the multilevel principal component regression model was compared 

to the nonparametric principal component regression model of Umali and Barrios (2014). The 
mean MAPE for each setting was computed to determine the performance of the two models. 
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6. Discussion 

   
General Adaptive Sparse Principal Component Analysis (GAS-PCA) proposed by Torres 

and Barrios (2013) was used to reduce the dimension of the data set. The number of principal 
components (PCs) extracted was varied depending on the structural dependencies among the 
generated predictor variables.  

 
Sparsity and specification bias are two main considerations when deciding on how many 

principal components to retain. For Set 1 the loadings are sparse on the average, with atmost 
5% nonzero loadings (NZL), except for the case where n=100 and the selection of 3 PCs (See 
Figure 1).   

 
Figure 1. Average Percent Nonzero Loadings for Data Set 1 

 
However, the average percent explained variance (PEV) by the first PC has the largest 

contribution of atmost 29%. The 2nd PC also has additional PEV of almost 10%. The third PC 
has a very small contribution, 5% at the most. It can be deduced that the GAS-PCA captured the 
2 structural dependencies on the generated predictors. 

 
Figure 2. Average Percent Explained Variances for Data Set 1 
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Figure 3. Average Percent Nonzero Loadings for Data Set 2 

 
 

Figure 4. Average Percent Explained Variances for Data Set 2 

 
 
 It can be noticed from Figure 3 that as the sample size of Data Set 2 increases the GAS-
PCA produce more sparse loadings. Moreover, as the sample size increases the average 
percentage variance explained by the principal components decreases (See Figure 4). The 5 
dependency structure has been also captured by the GAS-PCA.  
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Figure 5. Average MAPE for Varying Number of Groups 

 
 
In data sets with hierarchical structures, individuals can be categorized in few or many 

groups. Figure 5 shows that as the variability of the group level effect increases, the average 
MAPE decreases.  

 
Table 3. Average MAPE for Varying Distribution of Observations per Group 

Group Level Effect Distribution 

2 PCs 5 PCs 

h=3 h=10 h=3 h=10 

Zero Variability 

Equal      

5 Units 8.81 2.29 8.56 8.44 

10 Units 4.19 1.32 4.27 1.60 

Unequal         

Small 8.85 2.48 8.76 2.49 

Large 4.28 1.32 4.40 1.60 

Small Variability 

Equal         

5 Units 8.50 2.18 8.28 2.26 

10 Units 4.11 1.29 4.20 1.56 

Unequal      

Small 8.45 2.34 8.35 2.36 

Large 4.16 1.28 4.28 1.54 

Large Variability 

Equal         

5 Units 7.56 1.85 7.38 1.93 

10 Units 4.12 1.19 4.28 1.40 

Unequal      

Small 7.22 1.93 7.10 1.96 

Large 3.76 1.16 3.87 1.37 

 
The average MAPE values show that the performance of the multilevel principal 

component regression model is more affected by the number of observations per group than the 
allocation of observations per group. As the number of units per group increases, the MAPE 
decreases on the average (Table 2). 
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 The misspecification error accounts for all possible sources of variation which is not 
explained in the model.  

Table 3. Average MAPE for Varying Levels of Misspecification 

Group Level Effect Level of Misspecification 2 PCs 5 PCs 

Large Variability 
m=1 1.19 1.23 

m=5 6.01 6.10 

Small Variability 
m=1 1.29 1.33 

m=5 6.79 6.87 

Zero Variability 
m=1 1.34 1.38 

m=5 7.05 8.65 

 
The estimated model may have lower predictive ability if it is misspecified. The results in 

Table 3 shows that the average MAPE for the model without misspecification is almost five times 
lower than that of with misspecification. This is true for both data sets.   
 

7. CONCLUSIONS AND RECOMMENDATION 

 
The multilevel principal component regression model was postulated in this study. 

General Adaptive Sparse Principal Component Analysis (GAS-PCA) was used as a dimension 
reduction method. The simulations show that the proposed model have addressed the issues of 
“curse of dimensionality” and multicollinearity among high dimensional predictors. In addition, 
the problems on interpretability and specification bias due to extraction of few principal 
components have been resolved by the model. 

The multilevel principal component regression (MLPCR) model performs better when 
there is large number of groups. Also, the performance of the model improves as the number of 
units per group increases. However, the proposed model is robust to the manner of allocation of 
units per group.  

The multilevel principal component regression model can be used when the researcher 
is interested in modelling high dimensional data and the observations are nested in different 
groups. This model can assure that the problems on dimensionality, interpretability and 
specification bias are treated. 
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