
Page 1 of 10 

 

14th National Convention on Statistics (NCS) 

Crowne Plaza Manila Galleria, Quezon City October 1-3, 2019 
 

 

 

 

 

 

 

 

BAYESIAN ESTIMATION OF A-PARCH MODEL: AN APPLICATION TO JOLLIBEE 
FOOD CORPORATION STOCK MARKET 

 

 

by 

 

Shane Marigold L. Oliveros, MSc and Arnulfo P. Supe, PhD 

 

 

 

 

 

 

For additional information, please contact: 

 
Author’s name Shane Marigold L. Oliveros, MSc 
Designation Statistician II 
Affiliation Department of Social Welfare and Development – Field Office VII 
Address M.J. Cuenco Ave. cor Gen. Maxilom Ave., Carreta, Cebu City 6000 
E-mail shanemarigold0513@gmail.com 

Author’s name Arnulfo P. Supe, PhD 
Designation Retired Professor 
Affiliation MSU – Iligan Institute of Technology 
Address Andres Bonifacio Ave., Tibanga, Iligan City 9200 
E-mail arnulfosupe@gmail.com 



 

Page 2 of 10 
 

 

 BAYESIAN ESTIMATION OF A-PARCH MODEL: AN APPLICATION TO JOLLIBEE 

FOOD CORPORATION STOCK MARKET 

by 

Shane Marigold L. Oliveros, MSc1, and Arnulfo P. Supe, PhD 

ABSTRACT 
 

This study derives the posterior densities and computes the estimates of the parameters of the Asymmetric 
Power Autoregressive Conditional Heteroscedasticity (A-PARCH(p,q)) model using the Bayesian approach. 
The Markov Chain Monte Carlo (MCMC) method with Metropolis-Hastings (M-H) algorithm is used in 
estimating the parameters of the model. The procedure is applied to model the returns of Jollibee Food 
Corporation (JFC) stock market. The best fit model for the JFC stock market returns is ARMA(1,1) – A-
PARCH(1,1) model with Student's t-distributed innovations with a Mean Square Error (MSE) value of 1.75107. 
 

Index Terms— Bayesian inference, time series, estimation, heteroscedasticity, A-PARCH model, stock 
market, returns, volatility, innovations 

 

1.  INTRODUCTION 

 

Most investors dislike taking risk and require a premium for holding assets with risky payoffs. The 

fact that market participants may forecast volatility has important implications. There are periods 

where the investor has forecasted prices to be very volatile, he/she should either exit the market or 

require a large premium as compensation for bearing an unusual high risk. Accurate forecasting will 

help the investors in dealing with risk and expected return, two basic elements in the decision-

making process.  

 

 Among the most difficult data to model are financial data, because they are replete with volatility 

clusters. Small inaccuracies in forecasting will lead to large losses, thus it is important that models 

should be as accurate as possible. This study will attempt to model market and financial trends, and 

at the same time, will also model financial volatility. This will provide a very useful tool for effective 

forecasting that will have a large impact on a country's economy. 

 
One of the main assumptions of the standard linear regression analysis and time series models 

is homoscedasticity which means that the variance of the error terms is constant across all 
observations. However, this assumption is rarely satisfied in most problems, especially concerning 
financial time series, since the presence of volatility in financial time series data causes the variance 
of the error terms to be nonconstant or said to be heteroscedastic. 

 
Engle [1] in 1982 first introduced the Autoregressive Conditional Heteroscedasticity (ARCH) 

model which was the first model to model stock market's volatility that varies over time. However, 
one disadvantage of the ARCH model is that it requires a long lag length or a large number of 
parameters to approximately model the data. This drawback of the ARCH model is addressed by 
Tim Bollerslev [2] in 1986 when he developed the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) model. GARCH model allows both the squares of the past errors and 
the past conditional variances in the current conditional variance equation. It has the same 
properties as the ARCH model but requires less parameters to precisely model heteroscedasticity. 
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When using these models, there is an imposed restriction on the parameters to ensure that the 
variance is positive. For this reason, variations of the ARCH model are developed to allow 
asymmetric effect of positive and negative stock returns such as the Exponential GARCH 
(EGARCH) model, GJR-GARCH model and Threshold GARCH (TGARCH) model. Another model 
which takes into account the asymmetric response of volatility to positive and negative shocks also 
known as the leverage effect of the stock market returns is the Asymmetric Power ARCH (A-
PARCH) model, which was introduced by Ding, Granger and Engle [4] in 1993.  

 
The distribution usually chosen for the error terms of these models is the normal distribution. 

However, according to Engle [1], the normality assumptions of the error terms may not be 
appropriate in some applications since heavy tails are commonly observed in economic and financial 
time series data. Some studies show that the Student's t-distributed errors interpret better the 
features of the series.  

 
Classical parameter estimation of the ARCH-type models can be done using the maximum 

likelihood estimation (MLE), quasi-maximum likelihood estimation (QMLE) or generalized method 
of moments (MoM). On the other hand, the Bayesian analysis of this type of models is being studied 
by the statisticians and econometricians which believe to offer advantages over the classical 
approach. 

This paper focuses on the Bayesian estimation of A-PARCH(p,q) model. This paper is organized 
as follows. Section 2 is the summary of the theoretical results of the Bayesian estimation of the A-
PARCH(p,q) model with Student’s t-distributed innovations. Section 3 gives the application of the 
procedure to real data. Finally, section 4 gives the concluding statements for this paper. 

 

2.  BAYESIAN ESTIMATION OF A-PARCH MODEL WITH STUDENT’S T-DISTRIBUTED INNOVATIONS 

 

The Asymmetric Power Autoregressive Heteroscedasticity (A-PARCH(p,q)) model of the error 
terms 𝑦𝑡 with Student's t-distributed innovations 𝜖𝑡 can be written using data augmentation as 

𝑦𝑡 =  𝜖𝑡(𝜎ℎ𝑡)
1
2 

𝜖𝑡  ~ 𝑁(0,1) 

𝜔𝑡~𝐼𝐺 (
𝜐

2
,
𝜐

2
) 

𝜎 =  
𝜐 − 2

𝜐
 

ℎ𝑡

𝛿
2 =  𝛼0 +  ∑ 𝛼𝑖(|𝑦𝑡−𝑖| −  𝛾𝑖𝑦𝑡−𝑖)𝛿 +  ∑ 𝛽𝑗ℎ

𝑡−𝑗

𝛿
2

𝑞

𝑗=1

𝑝

𝑖=1

         (1) 

where 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, 𝛿 > 0 and |𝛾𝑖| < 1 to ensure a positive conditional variance, ℎ0 =

 𝑦0 = 0  for convenience, 𝜖𝑡  is an independent and identically distributed innovation, 𝜔𝑡  is an 
independent and identically distributed latent variable,  𝜎 is the scaling factor, 𝑁(0,1) is the standard 

normal density, 𝐼𝐺 (
𝜐

2
,

𝜐

2
) is the inverse gamma density with parameters 

𝜐

2
 and 

𝜐

2
, 𝜐 is the degrees of 

freedom parameter, and ℎ𝑡 is the conditional variance of 𝑦𝑡 given {𝑦𝑡−1, 𝑦𝑡−2, … } when 𝛿 = 2. 
 

 Define the vectors 𝒚 =  (𝑦1, … , 𝑦𝑡)′, 𝜶 = (𝛼0, 𝛼1, … , 𝛼𝑝)′, 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑞)
′
, 𝜸 = (𝛾1, 𝛾2, … , 𝛾𝑝)′, 

𝝎 = (𝜔1, 𝜔2, … , 𝜔𝑇)′, 𝜽 = (𝜶, 𝜷, 𝜸, 𝜐), and Ξ = (𝜽, 𝝎). Also, define a T x T diagonal matrix 

Σ =  Σ(Ξ) = 𝑑𝑖𝑎𝑔({𝜔𝑡𝜎ℎ𝑡}𝑡=1
𝑇 ) =  [

𝜔1𝜎ℎ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜔𝑇𝜎ℎ𝑇

] 

where 
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ℎ𝑡(𝜶, 𝜷, 𝜸) =  𝛼0 + ∑ 𝛼𝑖(|𝑦𝑡−𝑖| −  𝛾𝑖𝑦𝑡−𝑖) + ∑ 𝛽𝑗ℎ𝑡−𝑗(𝜶, 𝜷, 𝜸)

𝑞

𝑗=1

𝑝

𝑖=1

 

when 𝛿 = 2. Then, the likelihood function of Ξ is 

𝐿(Ξ|𝒚)  ∝  |Σ|−
1
2 𝑒𝑥𝑝 {−

1

2
𝒚Σ−1𝒚}. 

The following are the proposed priors for 𝜶, 𝜷, and 𝜸: 

𝑝(𝜶)  ∝  𝑁𝑝+1(𝜶|𝝁𝜶, Σ𝜶)𝐼(𝜶>0) 

𝑝(𝜷)  ∝  𝑁𝑞(𝜷|𝝁𝜷, Σ𝜷)𝐼(𝜷≥0) 

𝑝(𝜸)  ∝  𝑁𝑝(𝜸|𝝁𝜸, Σ𝜸)𝐼(|𝜸|<1). 

 
 Assume that the priors of the parameters 𝜶, 𝜷, and 𝜸 are independent implying that 𝑝(𝜽) =
𝑝(𝜶)𝑝(𝜷)𝑝(𝜸). Then, the joint posterior density where the construction is based on the Bayes’ 
theorem is given by 

𝜋(𝜽|𝒚)  ∝ 𝐿(𝜽|𝒚)𝑝(𝜽). 
 

Before deriving the posterior densities of the parameters 𝜶 , 𝜷 , and 𝜸 , first transform the 

conditional variance in (1) by defining 𝑙𝑡 =  𝑣𝑡 − ℎ𝑡 where 𝑣𝑡 =  𝑦𝑡
2. So, we obtain  

𝑣𝑡 =  𝛼0 +  ∑ 𝛼𝑖(|𝑦𝑡−𝑖| − 𝛾𝑖𝑦𝑡−𝑖)2 + ∑ 𝛽𝑗𝑣𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑖=1

−  ∑ 𝛽𝑗𝑙𝑡−𝑗

𝑞

𝑗=1

+  𝑙𝑡 . 

Following Nakatsuma [4], the variable 𝑙𝑡  is approximated by a variable 𝑧𝑡  ~ 𝑁(0,2ℎ𝑡
2). Then, the 

auxiliary model is given by 

𝑧𝑡 =  𝑣𝑡 −  𝛼0 −  ∑ 𝛼𝑖(|𝑦𝑡−𝑖| −  𝛾𝑖𝑦𝑡−𝑖)2 −  ∑ 𝛽𝑗𝑣𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑖=1

+   ∑ 𝛽𝑗𝑧𝑡−𝑗

𝑞

𝑗=1

 

when 𝛿 = 2 where 𝑧𝑡 is a function of (𝜶, 𝜷, 𝜸) and 𝑧𝑡 = 𝑣𝑡 = 0 for 𝑡 ≤ 0. Now, define a T x 1 vector 

𝒛 = (𝑧1, … , 𝑧𝑇)′ and a T x T diagonal matrix 

Λ = 𝑑𝑖𝑎𝑔({2ℎ𝑡
2}𝑡=1

𝑇 ) =  [
2ℎ1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 2ℎ𝑇

2
]. 

The approximate likelihood function of (𝜶, 𝜷, 𝜸) is 

𝐿(𝜶, 𝜷, 𝜸|𝒚) =  |Λ|−
1
2 𝑒𝑥𝑝 {−

1

2
𝒛′Λ𝒛}. 

The construction of the posterior (proposal) densities for 𝜶, 𝜷, and 𝜸 will be based on this likelihood 
function. 
 
 Based on the approximate likelihood function of (𝜶, 𝜷, 𝜸) and the prior densities of the parameters 

𝜶, 𝜷, and 𝜸, and using the Bayes’ theorem, the following are the posterior (proposal) densities of 
the parameters 𝜶, 𝜷, and 𝜸: 

For 𝜶: 

𝜋(𝜶|𝒚)  ∝ 𝑒𝑥𝑝 {−
1

2
(𝜶 − �̂�𝜶)′Σ̂𝜶

−1(𝜶 −  �̂�𝜶)} 

∝  𝑁(�̂�𝜶, Σ̂𝜶)𝐼(𝜶>0) 

with Σ̂𝜶
−1 = 𝑪′Λ̃−1𝑪 +  Σ𝜶

−1 and �̂�𝜶 =  Σ̂𝜶(𝑪′Λ̃−1𝑣 + Σ𝜶
−1𝝁𝜶) where 𝑪 is a T x (𝑝 + 1) matrix whose tth 

row is 𝒄𝑡, the T x T diagonal matrix Λ̃ = 𝑑𝑖𝑎𝑔({2ℎ𝑡
2(�̃�, 𝜷, 𝜸)}𝑡=1

𝑇 ) and �̃� is the previous draw of 𝜶 in 
the Metropolis-Hastings (M-H) sampler. 
For 𝜷: 

𝜋(𝜷|𝒚)  ∝ 𝑒𝑥𝑝 {−
1

2
(𝜷 −  �̂�𝜷)

′
Σ̂𝜷

−1(𝜷 −  �̂�𝜷)} 
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∝  𝑁(�̂�𝜷, Σ̂𝜷)𝐼(𝜷≥0) 

with Σ̂𝜶
−1 = 𝚽′Λ̃−1𝚽 + Σ𝜷

−1 and �̂�𝜷 =  Σ̂𝜷(𝚽′Λ̃−1𝑠 + Σ𝜷
−1𝝁𝜷) where 𝝓 = (𝜙1, … , 𝜙𝑇)′, 𝒔 = (𝑠1, … , 𝑠𝑇)′,  

the T x T diagonal matrix Λ̃ = 𝑑𝑖𝑎𝑔 ({2ℎ𝑡
2(𝜶, �̃�, 𝜸)}

𝑡=1

𝑇
)  and �̃�  is the previous draw of 𝜷  in the 

Metropolis-Hastings (M-H) sampler. 
For 𝜸: 

𝜋(𝜸|𝒚)  ∝ 𝑒𝑥𝑝 {−
1

2
(𝜸 −  �̂�𝜸)

′
Σ̂𝜸

−1(𝜸 − �̂�𝜸)} 

∝  𝑁(�̂�𝜸, Σ̂𝜸)𝐼(|𝜸|>0) 

with Σ̂𝜸
−1 = 𝑪′Λ̃−1𝑪 +  Σ𝜸

−1  and �̂�𝜸 =  Σ̂𝜸(𝑪′Λ̃−1𝑣 +  Σ𝜸
−1𝝁𝜸) where 𝑪 is a T x (𝑝 + 1) matrix whose tth 

row is 𝒄𝑡, the T x T diagonal matrix Λ̃ = 𝑑𝑖𝑎𝑔({2ℎ𝑡
2(𝜶, 𝜷, �̃�)}𝑡=1

𝑇 ) and �̃� is the previous draw of 𝜸 in 
the Metropolis-Hastings (M-H) sampler. 
 
 The derivation of the full conditional posterior density of 𝝎 = (𝜔1, … , 𝜔𝑇)′, an independent and 

identically random variables from an inverse gamma density with parameters 
𝜐

2
 and 

𝜐

2
 is 

straightforward. The prior density of 𝝎 is given by 

𝑓(𝝎|𝜐) ∝ ∏ 𝜔𝑡

−
𝜐
2

−1
 𝑒𝑥𝑝 {

−𝜐

2𝜔𝑡
}

𝑇

𝑡=1

 

and its likelihood function is given by 

𝐿(𝝎|𝒚) ∝ ∏ 𝜔𝑡

−
1
2 𝑒𝑥𝑝 {−

1

2
(

𝑦𝑡
2

𝜔𝑡𝜎ℎ𝑡
)}

𝑇

𝑡=1

. 

Hence, by Bayes’ theorem, the joint posterior density of 𝝎 is given by 

𝜋(𝝎|𝒚)  ∝  ∏ 𝜔𝑡

−
𝜐+1

2
−1

 𝑒𝑥𝑝 {
−�̃�𝑡

2𝜔𝑡
}

𝑇

𝑡=1

 

which is the kernel of an inverse gamma density with parameters 
𝜐+1

2
 and �̃�𝑡 =  

𝑦𝑡
2

𝜎ℎ𝑡
+  𝜐. 

 
 The rejection sampling is used to generate draws for the degrees of freedom parameter 𝜐 . 

Following Deschamps’ (2006) choice of the prior density of the degrees of freedom parameter 𝜐, the 
translated exponential density with parameters 𝜇 > 0 and 𝜆 ≥ 0 and is given by 

𝑓(𝜐) =  𝜇𝑒−𝜇(𝜐−𝜆) 
is used. The joint density of the vector 𝝎 = (𝜔1, … , 𝜔𝑇)′ conditional on 𝜐 is 

𝑓(𝝎|𝜐) =  (
𝜐

2
)

𝑇𝜐
2

[Γ (
𝜐

2
)]

−𝑇

∏ 𝜔𝑡

−
𝜐
2

−1
 𝑒𝑥𝑝 {

−𝜐

2𝜔𝑡
}

𝑇

𝑡=1

. 

Thus, the posterior (proposal) density of 𝜐 is 

𝜋(𝜐|𝝎)  ∝  (
𝜐

2
)

𝑇𝜐
2

[Γ (
𝜐

2
)]

−𝑇

𝑒𝑥𝑝{−𝜑𝜐} 

where 𝜑 =  
1

2
[∑ (

1

𝜔𝑡
+ ln 𝜔𝑡)𝑇

𝑡=1 ] +  𝜇. 

3.  APPLICATION TO REAL DATA 

 

The Bayesian estimation of the A-PARCH(p,q) model is applied to real data particularly to the 
stock market closing price index of Jollibee Food Corporation (JFC) from May 03, 2012 to April 23, 
2019. JFC also known as Jollibee after its primary fast food brand is a Filipino multinational company 
based in Pasig, Philippines.  The data is from the Investing website 
(https://www.investing.com/equities/jollibee-foods-historical-data). 
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This paper uses the daily return of the closing price index as the variable of interest and is 

calculated as 
𝑟𝑡 = 100[ln 𝑝𝑡 − ln 𝑝𝑡−1] 

where 𝑟𝑡 is the rate of returns for each stock and 𝑝𝑡 is the closing price index for each stock at time 
t. 
 

TABLE I: Descriptive Statistics of the JFC Return Series 

 Statistic p-value 

Sample Size 1692  

Minimum -10.48796  

Maximum 9.40701  

Mean 0.05819  

Standard Deviation 1.81376  

Skewness 0.00972  

Kurtosis 2.84917  

Jarque-Bera Test for Normality 577.75 < 2.2 x 10-16* 

Augmented Dickey-Fuller Test for Stationarity -13.285 0.01* 

Box-Pierce Test for Serial Correlation 34.083 5.282 x 10-9* 

Ljung-Box Test for Heteroscedasticity 34.143 5.121 x 10-9* 
• * on the p-value implies rejection of the null hypothesis H0. 

• Augmented Dickey-Fuller Test H0: The series is not stationary. 

• Jarque-Bera Test H0: The series is normally distributed. 

• Box-Pierce Test H0: The series has no serial correlation. 

• Ljung-Box Test H0: There is no ARCH effect present in the series. 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 

Fig. 1. Historical Plot of the JFC Return Series 
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Fig. 2. Correlogram of the ACF and PACF of JFC Return Series 
 

In Fig. 1, the time series line plot of the JFC return series shows that the series has a constant 
mean over time implying that the series is stationary with respect to the mean. The correlogram of 
the autocorrelation function (ACF) of the series shown in Fig. 2 shows that the series cuts off at 
certain lags suggesting that the series is stationary. Based on the result of the Augmented Dickey-
Fuller test in Table I, the null hypothesis that the series is not stationary is rejected since its p-value 
(= 0.01) is less than the level of significance 𝛼 = 0.05. Hence, there is a sufficient evidence that the 
series is stationary at the level of significance 𝛼 = 0.05 . Therefore, the JFC return series is 
stationary. However, it can be observed in Fig. 1 that volatility clustering is present in the series 
suggesting that there is a need of modelling the heteroscedasticity.  

 
Looking at Table I, the mean (= 0.05819) of the return series is less than its standard deviation (= 

1. 81376) indicating a high volatility of the return series. The skewness (= 0.00972) of the return 
series suggests that the series exhibits a positively skewed distribution (skewed to the right) which 
means that the right tail of the distribution is longer than the left. Its kurtosis (= 2.84917) implies that 
the return series exhibits a platykurtic distribution. Compared to a normal distribution, it has a shorter 
and thinner tail and its central peak is lower and broader.  

 
Moreover, based on the Jarque-Bera test result in Table I, the null hypothesis that the return series 

is normally distributed is rejected since its p-value (< 2.2 x 10-16) is less than the level of significance 
𝛼 = 0.05. Hence, there is a sufficient evidence that the series is not normally distributed. Additionally, 
the Box-Pierce test result shows that the null hypothesis (H0: The return series has no serial 
correlation.) is rejected since its p-value (= 5.282 x 10-9) is less than the level of significance 𝛼 =
0.05. Thus, there is a sufficient evidence that serial correlation is present in the return series implying 
serial dependence. Further, based on the Ljung-Box test result, the null hypothesis that there is no 
ARCH effect present in the return series is rejected since its p-value (= 5.121 x 10-9) is less than the 
level of significance 𝛼 = 0.05. Therefore, the return series has an ARCH effect or its variance is not 
constant over time (heteroscedastic). 

 

a.  Selection of ARIMA(p,d,q) Model 

 

In choosing the best fit mean model, the correlogram of the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) are used. ACF is used to identify the extent of the lag in a 
moving average model while PACF is used to identify the extent of the lag in autoregressive model. 
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Then, the Akaike Information Criterion (AIC) of the candidate models are compared. The lower the 
value of the AIC, the more accurate the model fits the series. 

 
Looking at Fig. 2, the ACF spikes at lag 1 suggesting that the possible model for the return series 

may include MA(1). Also, the PACF shows a spike at lag 1 indicating that the possible model may 
include AR(1). Thus, the candidate models for the returns series are AR(1), MA(1) and ARMA(1,1). 
 

TABLE II: Comparison of the Candidate Mean Models 

Model AIC 

ARMA(1,0) 6787.09 

ARMA(0,1) 6784.51 

ARMA(1,1) 6770.72 

 
Now, upon comparing the three candidate mean models of the return series given in Table II, 

ARMA(1,1) has the lowest value of AIC. Therefore, the best fit mean model for the JFC return series 
is ARMA(1,1). 

 
After choosing the mean model that best fits the return series, diagnostics are performed on the 

residuals. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Residual Plot 
 

TABLE III: Diagnostics in the Mean Model Residuals 

 Statistic p-value 

White Noise Test 15.883 0.02621* 

Ljung-Box Test for Heteroscedasticity 57.335 3.675 x 10-14* 

Jarque-Bera Test for Normality 537.88 < 2.2 x 10-16* 
• * on the p-value implies rejection of the null hypothesis H0. 

• Ljung-Box test is performed on the squared residuals of the mean model. 

• White Noise Test H0: The residuals follow a white noise behavior. 

• Ljung-Box Test H0: There is no ARCH effect present in the series. 

• Jarque-Bera Test H0: The series is normally distributed. 

 
It can be observed in Fig. 3 that the residuals of the mean model are stationary with respect to the 

mean since its mean is constant over time. However, the residuals are not stationary with respect 
to the variance since the fluctuation is not constant over time. Hence, the residuals of the mean 
model are not stationary. This claim is supported by the white noise test result. Based on the white 
noise test result, the null hypothesis that the residuals follow a white noise behavior is rejected since 
its p-value (= 0.02621) is less than the level of significance 𝛼 = 0.05.Thus, there is no sufficient 
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evidence that the residuals follow a white noise behavior implying that the residuals do not follow a 
white noise behavior.  

 
Furthermore, it is evident in the residual plot given in Fig. 3 that volatility clustering is present on 

the residuals suggesting that the residuals can be modelled by a heteroscedasticity model. This 
observation is supported by the Ljung-Box test result. Based on the result, the null hypothesis that 
there is no ARCH effect present in the squared residuals of the mean model is rejected since its p-
value (3.675 x 10-14) is less than the level of significance 𝛼 = 0.05. Therefore, the squared residuals 
have an ARCH effect or its variance is not constant over time (heteroscedastic) implying that the 
residuals of the mean model are can be modelled by a heteroscedasticity model. In addition, the 
Jarque-Bera test result shows that the null hypothesis that the residuals are normally distributed is 
rejected since its p-value (< 2.2 x 10-16) is less than the level of significance 𝛼 = 0.05. Hence, the 
residuals of the mean model do not follow a normal distribution which suggests that the Student's t 
distribution must be used as the distribution of the innovations. 

 

b.  Selection of A-PARCH(p,q) Model 

 

After performing the diagnostics which are the white noise test, Ljung-Box test and Jarque-Bera 
test for the residuals of the mean model of the return series, the results suggest that the residuals 
can be modelled by a heteroscedasticity model. 

 
In choosing the best fit heteroscedasticity (A-PARCH) model, the correlogram of the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) are used to identify the 
order (p,q) of the model. Then, the log-likelihood and Akaike Information Criterion (AIC) of the 
candidate models are compared. The model that has the highest log-likelihood value and the lowest 
value of AIC is the heteroscedasticity model that best fits the series. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Correlogram of the ACF and PACF of Squared Residuals 
 

Looking at Fig. 4, the ACF of the squared residuals is highly significant at lag 1 indicating that the 
order p of the possible heteroscedasticity model is 1. Also, the PACF shows a highly significant 
spike at lag 1 indicating that the order q of the possible model is 1. Thus, the A-PARCH model for 
the residuals is A-PARCH(1,1). 

 
Therefore, the final model for the JFC stock market returns is ARMA(1,1) – A-PARCH(1,1) with 

Student's t-distributed innovations.  
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TABLE IV: Bayesian Estimates of the ARMA(1,1) – A-PARCH(1,1) with Student’s t-distributed 
Innovations Parameters 

Parameter Estimates 

ϕ1 0.29589 

θ1 -0.46822 

α0 0.18483 

α1 0.18401 

γ1 0.31214 

β1 0.74935 

δ 0.79492 

ν 5.01306 

 
This model is used to compute the one-step ahead forecast of the JFC stock market returns with 

a Mean Square Error (MSE) value of 1.75107 shown in Fig. 5. 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 5. One-Step Ahead Forecast of JFC Returns 
 

4.  CONCLUSION 

The posterior densities for the parameters of the A-PARCH(p,q) model with Student’s t-distributed 
innovations are derived using the Bayesian approach. It has been shown that the posterior density 
for the model parameters 𝜶, 𝜷, and 𝜸 is normal distribution given that the prior density for the model 
parameters is normal distribution. Furthermore, Bayesian estimation of the A-PARCH(p,q) model is 
applied to model the returns of JFC stock market. It has been found out that the best fit model for 
the JFC stock market returns is ARMA(1,1) – A-PARCH(1,1) model with Student's t-distributed 
innovations. 
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