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Abstract 
 
This study derives the posterior distribution of the GJR-GARCH (p, q) model in Bayesian 
approach, and used student-t distribution as prior error distribution. The Markov chain Monte 
Carlo (MCMC) method, particularly the Metropolis-Hastings Algorithm is used in estimating the 
parameters of the GJR-GARCH (p, q) model. Furthermore, the estimates of the classical 
Maximum Likelihood Estimation (MLE) is compared to the estimates of Bayesian Estimation in 
terms of Mean Squared Error (MSE).  Simulation study shows that Bayesian estimates of the 
GJR-GARCH (p, q) model with student-t error distribution is more efficient than the classical 
Maximum Likelihood estimates.  
 
 
Background of the Study 

 
In many financial applications, forecasting the values of an economic commodity, like natural 

resources such as oil, basic foods and other classes of assets such as stocks, is very important 
information. Financial data is replete with the effect of volatility which causes instability in the 
prices of security. It is therefore important that financial time series be accurately modeled and 
predicted so that gains or profits can be optimized and economic decision will be more reliable.  

  
Robert Engle [2] in 1982 developed the Autoregressive Conditional Heteroskedastic (ARCH) 

model which was the first model to model time-varying volatility. For this contribution, Engle won 
the 2003 Nobel Memorial Prize in Economics. ARCH model grew rapidly as a volatility forecasting 
technique during the last thirty years and have been applied to numerous economic and financial 
data series. However, in many applications with the ARCH model, a long lag length or a large 
number of parameters are required to approximately model the data. Thus, Engle’s student, Tim 
Bollerslev [1], developed the Generalized Autoregressive Conditional Heteroskedastic (GARCH) 
model in which there is past conditional errors aside from conditional variance as part of the 
model. GARCH model had the same properties as the ARCH model but requires less parameters 
to precisely model heteroskedasticity. When using these models, there is an imposed restriction 
on the parameters to assure that the variance is positive. For this reason, Nelson [20] in 1991 
presented an alternative way to the GARCH model, the Exponential GARCH (EGARCH) model, 
by modifying it to allow asymmetric effect of positive and negative stock return. Another model 
which allows the positive and negative shocks to have different impact in the volatilities is the 
GJR-GARCH model, which was introduced by Glosten, Jagannathan and Runkle (1993). Later, 
many models were developed and extended regarding volatility models. 

 
In estimating the parameters of these financial time series model, one of the main objectives 

of many researcher is to find an estimate closer to the true value, most commonly used estimation 
procedure is the Maximum Likelihood Estimation (MLE). Maximum Likelihood estimates are 
known to be statistically efficient and its likelihood ratio test provide a powerful and general 
method of inference. However, the complexity of the computations of maximum likelihood 
estimates made it has become less practical in numerous situations. 

Thus, this paper focuses on the Bayesian estimation of the GJR-GARCH (p, q) model, and 
consider student-t distribution as distribution of error of the model. 
 



 
Objectives of the Study 
 

This study aims to provide parameter estimates of the GJR-GARCH (p, q) model using the 
Bayesian approach. Specifically, this study aims: 

 
1. To provide estimates of the GJR-GARCH (p, q) model with student-t distribution error and 

derive 
1.1 The posterior densities of 𝛾; 

1.2 The posterior densities of parameters 𝛼 and 𝛽; 
1.3 The full conditional posterior density of the latent variable 𝜔; and 

1.4 The posterior densities of degrees of freedom parameter 𝑣. 
 

2. To apply the Metropolis-Hastings algorithm using the R software computing the Bayesian 
estimates of the parameters of the GJR-GARCH (p, q) model with student-t distribution 
 

3. To compare the classical Maximum Likelihood estimates to the estimates of Bayesian 
Estimation using GJR-GARCH (p, q) with student-t error distribution. 

 
 
Methodology 
 
GJR-GARCH model was named from the authors who introduced it, Glosten, Jagannathan and 
Runkle [3] as an alternative way to model asymmetric effects. Following Ardia (2008), the GJR-
GARCH (p, q) model is defined as follows: 
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where 𝛼0 > 0, 𝛼𝑖 ≥ 0 (𝑖 = 1, … , 𝑞), 𝛼𝑖
∗ ≥ 0  (𝑖 = 1, … , 𝑞) and 𝛽𝑗 ≥ 0  (𝑗 = 1, … , 𝑝) to guarantee that 

the conditional variance is positive. This model is equivalent to the model given by 
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where IG denotes the Inverted Gamma density with parameters 
𝑣

2
 and 

𝑣

2
. 𝜀𝑡 is a sequence of 

independent and identically distributed random variables with 𝐸(𝜀𝑡) = 0 and 𝑣𝑎𝑟(𝜀𝑡) = 1. 
  

In Bayesian inference, MCMC allows one to generate samples of parameters in the model 
from joint posterior distribution. One of the MCMC technique is the Metropolis-Hastings algorithm.  
 
 
Metropolis-Hastings (MH) 
 



 The Metropolis-Hastings algorithm is one of the Markov Chain Monte Carlo (MCMC) 
sampling algorithm introduced by Metropolis, et al (1953) which allows to generate draws from 
any density of interest. Some complicated Bayesian Problem is hard to solve using the Gibbs 
sampling and this method is similar to Gibbs sampler that is for kth iteration, the distribution of 

𝜃(𝑘) will converge to 𝜋(𝜃) for large enough k but this is the case when the full conditional densities 

are of unknown form or when it is not easy to break down the join density into full conditionals.  
  
 Suppose we have a density that can generate candidates, so since we are dealing with 
Markov Chains this implies that the density will depend on the current state of the process say. 
Consider a candidate- generating density or a proposal density denoted by 𝑞(𝑥, 𝑦) where 

∫ 𝑞(𝑥, 𝑦)𝑑𝑦 = 1. This density means that when a process is at point x and the density generates 

a value y for 𝑞(𝑥, 𝑦). Then we can say that 

 

𝜋(𝑥)𝑞(𝑥, 𝑦) = 𝜋(𝑦)𝑞(𝑦, 𝑥) , 
 
for all x, y. But if the process moves from x to y too often, that is  
 

𝜋(𝑥)𝑞(𝑥, 𝑦) > 𝜋(𝑦)𝑞(𝑦, 𝑥),  
 
then the convenient way to correct this condition is to reduce the number of moves from x to y by 
introducing acceptance probability 𝛼(𝑥, 𝑦) < 1 where 𝛼(𝑥, 𝑦) is called the probability of move. If 

the move is not made, then the process will return to x as the value from the proposal density. 
Thus, transitions kernel from x to y are made according to  
 

𝑝(𝑥, 𝑦) ≡ 𝑞(𝑥, 𝑦)𝛼(𝑥, 𝑦)     𝑥 ≠ 𝑦 , 
 
where 𝛼(𝑥, 𝑦) must be determined. From equation (4.7), since the movement from x to y is not 

made enough, we should have defined 𝛼(𝑥, 𝑦) to be as large as possible. The probability of move 

𝛼(𝑥, 𝑦) is determined by requiring 𝑝(𝑥, 𝑦), then 

 

𝜋(𝑥)𝑞(𝑥, 𝑦)𝛼(𝑥, 𝑦) = 𝜋(𝑦)𝑞(𝑦, 𝑥)𝛼(𝑦, 𝑥) 

                       = 𝜋(𝑦)𝑞(𝑦, 𝑥) . 
 
We now see that 
 

𝛼(𝑥, 𝑦) =
𝜋(𝑦)𝑞(𝑦, 𝑥)

𝜋(𝑥)𝑞(𝑥, 𝑦)
 .
 

 
Thus, the probability of move must be 
 

𝛼(𝑥, 𝑦) = 𝑚𝑖𝑛 {
𝜋(𝑦)𝑞(𝑦, 𝑥)

𝜋(𝑥)𝑞(𝑥, 𝑦)
, 1} ,

 

 
and since 𝛼(𝑥, 𝑦) is a probability, that’s why its upper limit is 1. 

There are two-stage process to generate 𝜃(𝑘+1) in M-H algorithm. The first stage is to 

generate a candidate 𝜃∗ from a proposal density 𝑞(⦁|𝜃(𝑘−1)) which depends on the current state, 

𝜃(𝑘). And the second stage is to accept or reject 𝜃∗ with the acceptance probability 𝛼(𝑥, 𝑦). 

 
The algorithm of Metropolis-Hasting consists of the following steps: 



 
1. Initialize the iteration counter to 𝑗 = 1 and set an initial value 𝜃(0); 

2. Move the chain to a new value 𝜃∗ generated from the proposal density 𝑞(⦁|𝜃(𝑗−1)); 

3. Evaluate the acceptance probability of the move from 𝜃(𝑗−1) to 𝜃∗ given by: 

min {
𝑝(𝜃∗|𝑦)

𝑝(𝜃(𝑗−1)|𝑦)

𝑞(𝜃(𝑗−1)|𝜃∗)

𝑞(𝜃∗|𝜃(𝑗−1))
, 1} .

 

 
If the move is accepted, set 𝜃(𝑗) = 𝜃∗, if not, set 𝜃(𝑗) = 𝜃(𝑗−1) so that the chain does not 

move; 
4. Change the counter from j to j+1 and go back to step 2 until convergence is reached.  

 
As the number of iteration increases, the chain approaches its equilibrium distribution same 

in the Gibbs sampler. The power of the M-H algorithm is from the fact that for any proposal q 
who’s supported by the joint posterior distribution is obtained. If the proposal density is symmetric, 
then 𝑞(𝜃(𝑗)|𝜃∗) = 𝑞(𝜃∗|𝜃(𝑗)), the acceptance probability of the M-H algorithm will become 

 

𝑚𝑖𝑛 {
𝑝(𝜃∗|𝑦)

𝑝(𝜃(𝑗)|𝑦)
, 1} .

 

 
So that the proposal density does not need to be evaluated.  
 
 
Result 
 
A linear regression model can be written as 
 

𝑦𝑡 = 𝒙𝑡
′𝜸 + 𝒖𝑡     for 𝑡 = 1, … , 𝑇 , 

where 𝑦𝑡 is a scalar dependent variable, 𝒙𝑡 is a m x 1 vector of exogenous independent variable, 
𝜸 is a m x 1 vector of regression coefficients. 
 
 
Theoretical Results 
 
Using the following priors, 
 
 𝑝(𝛼) ∝ 𝑁2𝑞+1(𝛼|𝜇𝛼 , ∑𝛼)𝐼{𝛼>0}    

 𝑝(𝛽) ∝ 𝑁𝑝(𝛽|𝜇𝛽 , ∑𝛽)𝐼{𝛽>0} 

    
The Posterior Density of 𝜶 
 
The approximate likelihood function of 𝛼 is 

𝐿(𝛼|𝛾, 𝛽, 𝑦, 𝑋) ∝ exp {−
1

2
(𝑣 − 𝐶′𝛼)′𝛬−1(𝑣 − 𝐶′𝛼)}       

 
Then the posterior density of 𝛼 is 

𝜋(𝛼|𝑦) ∝ exp {−
1

2
(𝛼 − 𝜇̂𝛼)′∑̂𝛼

−1
(𝛼 − 𝜇̂𝛼)} 

  with  
 



∑̂𝛼
−1

= 𝐶′𝛬̃−1𝐶 + ∑𝛼
−1  and 

 𝜇̂𝛼 = ∑̂𝛼
−1

(𝐶′𝛬̃−1𝑣 + ∑𝛼
−1𝜇𝛼) 

 

where the T x T diagonal matrix 𝜦̃ = 𝑑𝑖𝑎𝑔({2ℎ𝑡
2(𝜶̃, 𝜷)} 𝑇

𝑡=1
) and 𝜶̃ is the previous draw of 𝜶 in the 

M-H sampler.  
 
 
The Posterior Density of 𝜷 
 
The approximate likelihood function of parameter 𝛽 is, 
 

𝐿(𝛽|𝛼, 𝛾, 𝑦, 𝑋) ∝ exp {−
1

2
(𝑏 − 𝜑 𝛽)′𝛬−1(𝑏 − 𝜑 𝛽)}         

 
And the prior density of 𝛽 is given above, then the posterior density is 

𝜋(𝛽|𝛼, 𝛾, 𝑦, 𝑋) ∝ exp {−
1

2
(𝛽 − 𝜇̂𝛽)

′
∑̂𝛽

−1
(𝛽 − 𝜇̂𝛽)} 

with  
 

∑̂𝛽
−1

= 𝜑′𝛬̃−1𝜑 + ∑𝛽
−1  and 

𝜇̂𝛽 = ∑̂𝛽
−1

(𝜑′𝛬̃−1𝑏 + ∑𝛽
−1𝜇𝛽) 

 

where the T x T diagonal matrix 𝛬̃ = 𝑑𝑖𝑎𝑔({2ℎ𝑡
2(𝛼, 𝛽̃)} 𝑇

𝑡=1
) and 𝛽̃ is the previous draw of 𝛽 in the 

M-H sampler.  
 
 
Posterior Density of 𝝎 
 
The full conditional density of 𝝎 is straightforward to derive. Note that 𝜔1, 𝜔2, … , 𝜔𝑇 are 
independent and identically distributed random variables from an Inverted Gamma density given 
by, 

𝑝(𝜔𝑡|𝑣) ∝
(

𝑣
2)

𝑣
2

𝜏 (
𝑣
2)

𝜔𝑡
−

𝑣
2

−1 exp {−
𝑣

2𝜔𝑡
} 

      ∝ 𝜔𝑡
−

𝑣
2

−1 exp {−
𝑣

2𝜔𝑡
} . 

 
Then the joint density of T x 1 vector 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝑇)′ is 

𝑝(𝝎|𝑣) ∝ ∏ 𝜔𝑡
−

𝑣
2

−1 exp {−
𝑣

2𝜔𝑡
}

𝑇

𝑡=1

. 

The likelihood function of 𝝎 is 

𝐿(𝝎|𝒚, 𝑿)  ∝ ∏(𝜔𝑡)−
1
2 exp {−

1

2
[
(𝑦𝑡 − 𝑥𝑡

′𝛾)2

𝜔𝑡𝜎ℎ𝑡
]}

𝑇

𝑡=1

. 

 
Then using Bayes Theorem, we obtain the joint posterior as 
 



𝜋(𝝎|𝒖) ∝ ∏(𝜔𝑡)−
𝑣+1

2
−1 exp {−

1

2𝜔𝑡
[
(𝑦𝑡 − 𝑥𝑡

′𝛾)2

𝜎ℎ𝑡
+ 𝑣]}

𝑇

𝑡=1

 , 

which is the kernel of an Inverted Gamma Density with parameters 
𝑣+1

2
 and 

1

2
[

(𝑦𝑡−𝑥𝑡
′𝛾)

2

𝜎ℎ𝑡
+ 𝑣]  .       

 
 
The Posterior Density of 𝒗 
 
The translated exponential density with parameters 𝜆 > 0 and 𝛿 ≥ 2 is given by 
 

𝑝(𝑣) = 𝜆 exp[−𝜆(𝑣 − 𝛿)] . 
 
The prior density of vector 𝝎 = (𝜔1, 𝜔2, … , 𝜔𝑇)′ conditional on 𝑣 given in is 
 

𝑝(𝝎|𝑣) = (
𝑣

2
)

𝑇𝑣
2

[𝜏 (
𝑣

2
)]

−𝑇

∏ 𝜔𝑡
−

𝑣
2

−1 exp {−
𝑣

2𝜔𝑡
}

𝑇

𝑡=1

 . 

 
Thus, the posterior density is  
 

𝑝(𝑣|𝜔) ∝ (
𝑣

2
)

𝑇𝑣
2

[𝜏 (
𝑣

2
)]

−𝑇

exp{−∆𝑣}  ,     

 

where ∆= 𝜆 +
1

2
[∑ (

1

𝜔𝑡
+ ln 𝜔𝑡)𝑇

𝑡=1 ] . 

 
 
Simulation Results 
 

The parameters 𝛼𝑖(𝑖 = 0,1, … , 𝑞), 𝛼𝑖
∗(𝑖 = 1, … , 𝑞), 𝛽𝑗(𝑗 = 1, … , 𝑝) and 𝑣 was preset to 

obtain the simulated data with sample sizes 100, 500, 2500, 1000 and 5000. From this data, 
estimates of the parameters where computed using Bayesian analysis through MCMC simulation 
with Metropolis-Hastings algorithm. The MCMC technique particularly the Metropolis- Hastings 
algorithm was used to draw a sample values from the posterior density of the parameters. The 
first step in MCMC procedure is to set the following initial values of the parameters 

 

𝜃(0) = (𝛼(0), 𝛽(0), 𝑣(0)) 

 

then we generate iteratively a new value 𝜃(𝑗) = (𝛼(𝑗), 𝛽(𝑗), 𝑣(𝑗))
′
from the posterior density of the 

parameters. For each MCMC simulation, two chains were run with 5,000 iterations for each chain.  
The burn-in period was set to 2,500 for each chain. This implies that the first 2,500 iterations from 
each chain were disregarded. Hence, a total of 5,000 values of the chain were considered as 
samples from the true posterior density of the parameters. The mean of the sample values of 
each parameter is the estimate of the parameter. These samples values were also used to find 
the summary statistics and to make inferences about the joint posterior. 
 

The mean of the sample values of each parameter is the estimate of the parameter. The 
Bayesian and Maximum likelihood parameter estimate and their Mean Squared Errors (MSE) 
were calculated using 100 replications. The result for n = 500 and n = 5000 is given below. 



 
Comparing the performance of the classical Maximum Likelihood Estimation to the 

Bayesian estimation of the GJR-GARCH (2, 2) model with student-t error distribution. For n=500 
in Table 1, we observed that the parameters of the Bayesian estimates are closer to the true 
values except on the parameters 𝛼1, 𝛼2 and 𝛽2. Examining the MSE, it shows that the Bayesian 
estimates has a smaller MSE value except on parameters 𝛼1 and 𝛼2. For n = 5000, the Bayesian 
estimation still perform better that the classical MLE estimation. 

 

Table 2 Bayesian and Classical Estimates of Student-t Distribution n = 5000 

  Parameter True 
Value 

Mean Estimate MSE 

Bayesian MLE Bayesian MLE 

GJR-
GARCH(2,2) 

𝛼0 0.02 0.01815224 0.05017454  0.00000341 0.0073761 

𝛼1 0.06 0.04888406 0.06347442 0.00012387 0.0008280 

𝛼2 0.04 0.04999618 0.03612814 0.00010027 0.0009979 

𝛼1
∗ 0.04 0.05464162 0.07634240 0.00021465 0.1505255 

𝛼2
∗ 0.05 0.04717600 0.17983332 0.00000824 0.2774307 

𝛽1 0.1 0.13912346 0.20697849 0.00153212 0.0555703 

𝛽2 0.2 0.24859422 0.16277576 0.00236284 0.0440146 

𝑣 7 7.00689462 7.22856360 0.00005341 1.1063600 

Table 1 Bayesian and Classical Estimates of Student-t Distribution n = 500 

  Parameter True 
Value 

Mean Estimate MSE 

Bayesian MLE Bayesian MLE 

GJR-
GARCH(2,2) 

𝛼0 0.02 0.0192427 0.1363798 0.00000058 0.063987 

𝛼1 0.06 0.1173753 0.0491917 0.00329339 0.002394 

𝛼2 0.04 0.1045225 0.0420948 0.00416427 0.001935 

𝛼1
∗ 0.04 0.1044203 0.1132863 0.00415148 0.315362 

𝛼2
∗ 0.05 0.1002810 0.1467286 0.00252925 0.426304 

𝛽1 0.1 0.1631649 0.1981398 0.00399112 0.081455 

𝛽2 0.2 0.2786250 0.2382006 0.00618362 0.083732 

𝑣 7 7.0284896 7.5999792 0.00084780 3.481917 



Figure 1 shows the graph of the true value, the MCMC Bayesian estimates and the MLE 
estimates for parameter 𝛼1. For n = 50, some of the values in classical estimates are far from the 
true value. As n increases, the values tend to get closer to the true values. The behavior of the 
Bayesian method on the other provide estimations with small fluctuation for all the sample sizes. 
Hence, Bayesian estimation gives a smaller error for all sample sizes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 GJR-GARCH(1,1) Bayesian and Classical Estimates for  𝜶𝟏 
 
 
 
Conclusion 
 
The study shows that the Bayesian estimation of the GJR-GARCH (p, q) model with student-t 
distribution provides a better estimator than the classical Maximum Likelihood estimation. 
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